On Quantum Hamming Bound

نویسنده

  • Salah A. Aly
چکیده

It is desirable to study upper and lower bounds on the minimum distance and dimensions of quantum codes, so the computer search on the code parameter can be minimized and optimal codes can be known. It is a well-known fact that Singleton and Hamming bounds hold for classical codes [9]. We need some bounds on the achievable minimum distance of a quantum stabilizer code. Perhaps the simplest one is the Knill-LaFlamme bound, also called the quantum Singleton bound. The binary version of the quantum Singleton bound was first proved by Knill and Laflamme in [12], see also [1,2], and later generalized by Rains using weight enumerators in [16].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Quantum Error-Correcting Codes Saturating the Quantum Hamming Bound

I develop methods for analyzing quantum error-correcting codes, and use these methods to construct an infinite class of codes saturating the quantum Hamming bound. These codes encode k = n − j − 2 qubits in n = 2j qubits and correct t = 1 error. 89.80.+h, 03.65.-w Typeset using REVTEX [email protected] 1

متن کامل

A Note on Quantum Hamming Bound

Quantum stabilizer codes are a known class of quantum codes that can protect quantum information against noise and decoherence. Stabilizer codes can be constructed from self-orthogonal or dualcontaining classical codes, see for example [3, 8, 11] and references therein. It is desirable to study upper and lower bounds on the minimum distance of classical and quantum codes, so the computer search...

متن کامل

On subsystem codes beating the quantum Hamming or Singleton bound

Subsystem codes are a generalization of noiseless subsystems, decoherence-free subspaces and stabilizer codes. We generalize the quantum Singleton bound to Fq-linear subsystem codes. It follows that no subsystem code over a prime field can beat the quantum Singleton bound. On the other hand, we show the remarkable fact that there exist impure subsystem codes beating the quantum Hamming bound. A...

متن کامل

A Block-Sensitivity Lower Bound for Quantum Testing Hamming Distance

The Gap-Hamming distance problem is the promise problem of deciding if the Hamming distance h between two strings of length n is greater than a or less than b, where the gap g = |a − b| ≥ 1 and a and b could depend on n. In this short note, we give a lower bound of Ω( √ n/g) on the quantum query complexity of computing the GapHamming distance between two given strings of lenght n. The proof is ...

متن کامل

ar X iv : q ua nt - p h / 07 03 21 3 v 1 2 2 M ar 2 00 7 On Subsystem Codes Beating the Hamming or Singleton Bound

Subsystem codes are a generalization of noiseless subsystems, decoherence free subspaces, and quantum error-correcting codes. We prove a Singleton bound for Fqlinear subsystem codes. It follows that no subsystem code over a prime field can beat the Singleton bound. On the other hand, we show the remarkable fact that there exist impure subsystem codes beating the Hamming bound. A number of open ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007